在金相观测中对金相组织进行几何学定量测定的技术,也称之为立体金相。为了研究金属材料的金相组织和性能的定量关系,常需将检验面上二维空间的组织参数,依立体几何和体视学原理换算成三维空间参数进行分析。1938年美国材料试验协会制定ASTM-E八级晶粒度标准,高德注册
定量金相技术就开始应用于金属材料的检验和研究。60年代,由于可自动测量的定量金相显微镜的制成和体视学的应用,金相定量测定的技术得到进一步发展和推广。在金属和合金组织的各种形态参数的测量中,应用定量金相技术来测定第二相体积分数、第二相尺寸、质点间距、对有方向性组织的取向程度、比相界面、近邻率、连续性等。有比较法和测量法两类。
比较法
将所测相和标准图片比较定出一个定量级别,用此法只能得到关于材料组织或缺陷的一个笼统的概念,准确性差,但快速简便。
分为非自动测量法和自动测量法两种。非自动测量法利用一般光学显微镜和一些简单测量工具,测量可在金相组织照片或在金相显微镜投影屏上进行,也可直接通过带有测微标尺的目镜在试样上测定。自动测量法使用定量仪器,测量既可直接在试样检验面上进行,也可在组织的电子图象或金相组织照片上进行,测量速度快,误差小。
非自动测量法
常用的有测量面积法、线分法和点标法三种:
①量面积法。可用求积仪测量模板直接测量被测相在检验面上的面积,也可以把被测相从金相照片上剪下来,秤重以计算其重量而换算成面积。
②线分法。利用测微标尺测量被测相在单位测试线上所占的比率LL、单位测试线上的点数PL和单位测试线上的相个数NL。线分法测量实例见图1。测得α相在单位测试线上所占的比率LL=0.38,单位测试线上的点数PL=8,则单位测试线上的相个数NL=4。线分法测量除用有刻度的标尺外,还用已知周长的圆模板和标有方位角的圆模板来测量有方向性的组织。
③点标法。用于测量第二相的百分数等;一种是数出检验面上被测相的点数,例如位错露头的蚀坑、三个晶粒间的结点数等;另一种是用一个带点的阵列,置于检验面上,数出落在被测相上的点数,除以阵列的总点数。阵列有正方形和正六方形等,按金相组织疏密程度选用。
测量面积法、线分法和点标法可单独应用,也可联合使用。正方形网格,全部网格测试线的总长度(单位测试线长度)为1mm,网格中有36个阵点(网格和被测相边界相截出12个点,即单位测试线上的点数PL=12),有6个网格的阵点落在被测相上,则其点数比PP=6/36。
自动测量法
主要是利用线分法,其测量原理是将组织的光信号转变成电信号,再把电信号数字化成所需要的定量参数。电信号振幅大小反映相的灰度,而振幅宽窄则是相大小的量度。
定量金相显微镜线性扫描程序是由扫描点组成的扫描线,以回纹形轨迹对金相组织进行扫描,从不同相的光电流得到不同的电脉冲并由各相的计数系统进行累计。扫描结束后,如果扫过第二相的扫描点数为n,扫描点间距为K,被扫的第二相个数为N,扫过第二相的扫描线总长度为L=n•K,则第二相的平均截长为:
三维空间参数的换算
为了将二维平面参数转换为三维空间参数,根据体视学原理,把从二维平面中观察到的相的不同形状和特点,借助简单的几何模型及四个基本方程,将二维平面参数转换成三维空间参数,进而用数字表示出金属组织的几何形貌和分布特征。四个基本方程是:
三维空间参数的方程式
定量金相技术定量金相技术
式中VV为单位测试体积中被测相所占体积比;AΑ为单位测试面积中被测相所占面积比;LL为单位测试线上被测相线长所占的比;PP为落在被测相上的点数与总测试点数之比;SV为单位测试体积中被测相表面的曲面积;LΑ为单位测试面积上被测相的长度;PL为单位测试线上的点数;LV为单位测试体积中被测相的长度;PΑ为单位测试面积中的点数;PV为单位测试体积中的点数。上述四个方程中的一些量能直接测量,另一些量不能直接测量,但可从方程间接得出。各量之间的关系(画圈的可直接测量,画方框的必须通过计算才能得到)。定量金相技术
各国制造的定量金相显微镜,按其扫描类型分机械扫描和视频扫描两类。机械扫描是试样相对物镜移动,光电探测器接受的光束是由试样表面一小块面积反射发出,速度慢,误差小;视频扫描(即图象分析)的光电探测器接受的光束,不直接由试样表面反射发出,而由光电管上的电子图象发出。这种扫描速度快,误差较大。